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ABSTRACT-Cookie Clicker is a popular online 

game focused on students. This game requires users 

to perform repetitive clicks on the cookie which is 

an icon in the game that collects points from those 

clicks. Subsequently, those points are used for 

buying various available accessories and thus 

improving your progress in the game. However, 

these repetitive clicks create inconvenience due to 

the repetition cumbersome process of performing 

repetitive task of clicking for collecting points. This 

in turn affects the popularity of the game as the 

whole point of the game is to provide is to have 

points to buy accessories. Our work has 

implemented an AI based bot towards not only 

replacing the repetitive clicks but also collecting 

optimum relevant accessories based on the acquired 

points. A greedy-based approach is used for 

choosing optimum accessories as well as filtering 

out the overpriced accessories by the bot. The bot 

has been tested for 20 instances of game playing 

and is found to have achieved optimum accessories 

and repetition reduced by 95%. 

Keywords- cookie-per second (cps), web 

scrapping, time-module, Web-driver, Selenium. 

 

I. INTRODUCTION 
Cookie Clicker is an incremental game 

created by French programmerJulien "Orteil" 

Thiennot in 2013. The game require user to initially 

clicks on a big cookie icon on the screen, earning a 

single cookie per click. Once earned, cookies are 

spent on purchasing accessories such as cursor, 

grandma, factory, mine, shipment, Alchemy lab, 

Portal, Time Machine.  Each purchase further 

allows user to earn more cookies.Although this 

game allows user to earn infinite number cookies 

and subsequent accessories, users may aim to reach 

milestone numbers of cookies within a specified 

time.The game is played for collecting cookie by 

the clicking on the cookie icon. The number of 

cookies collected is utilized as a currency for 

buying the accessories like cursor, grandma, 

factory, mine, shipment, alchemy lab, portal, time 

machine. 

Each accessorieshave two properties such 

as price and cookie generation. While buying 

accessories, through earned cookies the property 

“price” gets increased. The asse bought through the 

earned cookies. Each generation increases cookie-

per second (CPS). However, it doesn‟t change the 

accessories cookie generation rate but the price for 

each accessory increases the more it‟s bought. 

Thus, after a period of time making that accessory 

over-priced for value provided. Thus, the goal of 

the game is to get the highest cps possible in for a 

given time. 

A big number of modern RPG (role 

playing games) is based on the principle of autopay 

which allows the user to only focus on acquiring 

accessories of the game. This kind of game follows 

the revenue model that is based on player-retention 

with the dopamine psychology of constant reward 

system. Our works focuses on increasing the player 

retention by removing the process of manually 

collecting the cookies and reducing the long-

playing hours.  The bot simply provides user the 

benefit of purchasing accessories for progressing 

further in the game. 

Our research addresses three major 

problems of the game such as i) the significant 

amount of clicking hours in the game, ii) over-

pricing of the items and iii) choosing the right 

accessories for the current cooking credit. 

The aforementioned issued are handled by 

achieving maximum cps. To achieve this, our 

research accomplishes the following task 

 Automating cookie clicks. 

 Filtering out the over-priced items. 

 Optimum accessory selection 

NOTE- The term items and accessories used in the 

paper refer to the same list of purchasable 

accessories present in the game. 

 

 

https://en.wikipedia.org/wiki/Incremental_game
https://en.wikipedia.org/wiki/Programmer
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II. RELATED WORK 
Game automation, Bot design, and Game testing 

are the three domain that this research paper 

expands upon. 

 

A. Game Automation[3][4][5] 

Gaming automation refers to the use of 

software or hardware tools to automate certain 

tasks or actions in video games. This can include 

anything from automatically farming resources or 

leveling up characters, to performing complex 

actions or movements with precision and speed. 

Players who want to save time and effort, or who 

want to achieve certain goals more quickly than 

they would be able to through manual play often 

use gaming automation. The essential ideas from 

the associated works are as follows: 

As described by Bellemare, M. G., et al 

the Developing AI agents with general competency 

across a variety of Atari 2600 games is a task that 

the Arcade Learning Environment (ALE) 

evaluation platform puts forward. It allows a range 

of diverse problem contexts, and the scientific 

community has been focusing on growing attention 

to it. That has led to several high-profile success 

stories including the highly publicized Deep Q-

Networks (DQN). 

The overall utilization of the ALE by the 

research community is looked by Bellemare, M.G, 

et al.  They illustrate the evolution of the ALE's 

evaluation procedures and identify several major 

issues that have been addressed. Through the help 

of this discussions, that we can offer some 

methodological best practices and in their natural 

state benchmark outcomes.   In order to continue 

the field's advancement, which provide an updated 

version of the ALE that supports numerous modes 

of play and provides a type of stochasticity that we 

refer to as sticky actions.  This broad analysis 

brings to a conclusion by an overview of the 

challenges observed when the ALE initially was 

suggested, an overview of the state of the art in a 

number of fields, and an overview of unresolved 

problems. 

Evolutionary Computation: Hingston et al. 

talk about the basis for developing agents being 

evolutionary algorithms, such as genetic algorithms 

or genetic programming. In order to find the best 

agent behaviors, these algorithms use Darwinian 

evolution-inspired concepts including selection, 

crossover, and mutation. 

The features of game automation help to 

solve the adversities as in form of gaming while 

helping in the continuous trigger‟s that is same 

through the gaming process. That is Auto-aim: This 

feature supports a player in automatically targeting 

at targets, making it easier to shoot and remove 

competitors.Auto-fire: With this feature, a player 

can engage in combat frequently without having 

continually tapping the fire button. Auto-loot: This 

option helps the player save time and effort by 

grabbing loot from containers and enemies 

automatically.Auto-run: With this function, a 

player can run without needing to keep the run 

button depressed.Auto-save: This function prevents 

the player from having to worry about manually 

saving the game by automatically saving the game 

progress at specific checkpoints.Auto-quest: This 

function helps the user achieve quests and 

objectives by guiding them. 

 

B. Bot Designing [6] 

Bot designing is the process of creating 

software programs that can perform automated 

tasks or actions without human intervention. Bots 

can be designed for various purposes, such as 

automating customer service, data collection, social 

media management, and gaming automation.  

The process of designing a bot involves 

several steps, including:Identifying the task or 

action to be automated, Determining the platform 

or environment in which the bot will operate, 

Selecting a programming language and 

development framework, Designing the bot's user 

interface and interaction flow, Implementing the 

bot's functionality and logic, Testing and 

debugging the bot, Deploying the bot to its 

intended environment, Bot designing requires skills 

in programming, software development, and user 

experience design. It is important to consider 

ethical and legal implications when designing bots, 

as some automated actions may be considered 

unethical or illegal.  

The main key components of a test like 

this are divided into the following categories: 

Bot Architecture: Describe the bot's 

architectural layout, including the main framework, 

individual modules, and interactions between the 

various parts. Talk about the architectural 

frameworks or patterns that were selected for the 

bot's development. 

Sensing and Perception: Investigate the 

techniques and tools used in sensing and 

perception, such as sensor integration, natural 

language processing, and computer vision. Talk 

about the methods utilized to get pertinent data 

from the environment or user inputs. 

Decision-Making and Control: Talk about 

the methods and algorithms the bot uses to make 

decisions and control itself. Rule-based systems, 

machine learning techniques, or hybrid strategies 

could be used in this. Describe how the bot weighs 
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alternatives, chooses actions, and modifies its 

behavior in response to input or shifting 

circumstances. 

Learning and Adaptation: Analyze the 

bot's capacity for learning and adapting. Talk about 

using machine learning, reinforcement learning, or 

other methods to help the bot get better with 

experience and feedback over time. 

Integration and Deployment: Discuss how 

the bot will be integrated into the target system or 

environment. Deal with any technical issues or 

difficulties relating to infrastructure for 

deployment, scalability, security, or compatibility. 

Performance and Evaluation: Analyze the 

bot's performance in terms of usability, 

effectiveness, dependability, and user happiness. 

Talk about the measures used to evaluate the bot's 

performance and any tests or empirical findings 

that support it. 

An in-depth review of the technological 

factors involved in creating intelligent bots is 

provided by a technical analysis of bot designing. It 

takes into account a number of things, including 

architecture, sensing, decision-making, learning, 

communication, integration, performance, and 

ethical concerns. Depending on the particular 

environment and goals of the bot design, the 

precise material and level of analysis may change. 

 

C. Game Testing[7][8] 

Game testing is a process of evaluating the 

quality and functionality of a video game before its 

release to the public. The goal of game testing is to 

identify and report any bugs, glitches, or other 

issues that could negatively affect the player's 

experience. A team of testers who play the game in 

various ways and scenarios to uncover any 

potential issues typically conducts game testing. 

Game testing typically involves several 

phases, including:Alpha testing: This is the initial 

phase of testing where the game is tested by a small 

group of testers to identify major issues and 

bugs.Beta testing: This is a more extensive phase of 

testing where the game is tested by a larger group 

of testers to identify any remaining issues and 

gather feedback on gameplay and user 

experience.Release candidate testing: This is the 

final phase of testing where the game is tested to 

ensure that it is ready for release to the public. 

Test automation tools, manual testing, and 

exploratory testing are just a few of the methods 

and tools that game testers employ to find 

problems. Additionally, they create bug reports to 

record their discoveries, and they collaborate with 

the game's production team to fix any problems 

before the game is launched. 

By Woof, W. and Chen, K. finding that 

the establishment of general video-game AI has 

proven to be an effective utilisation of deep 

reinforcement learning (DRL). Nevertheless, 

almost all of existing DRL audio-visual-game 

agents learn from the start to the end from the 

game's video output, which is redundant for many 

applications and introduces a number of additional 

problems. Furthermore, working directly with 

pixel-based basic video data is significantly 

different from what a real player would do. In this 

study, we provide an original approach that allows 

DRL agents to directly learn from object data. 

This is achieved by using an object 

embedding network (OEN), that simultaneously 

meets the DRL and compresses an array of object 

feature vectors of different lengths into a single 

fixed-length unified feature vector representing the 

current game state. By evaluating the OEN-based 

DRL agent against a number of innovative 

techniques on a game selected in the GVG-AI 

Competition. Based on our experimental findings, 

the performance of our object-based DRL agent is 

on par with the methodologies we utilized in our 

comparing research. 

 

III. PROPOSED MODEL 
We have dealt with the above problem with a three-

phase model, which divides and solves the problem 

in three phases. 

1. Automating the Cookie Clicks- 

Cookie clicks are automated by simply 

using selenium in-built functions to simply click 

the cookie continuously by putting it in a while 

loop which runs continuously, then, we use the 

time_constraint input taken in by the user to use as 

a time limit to end the continuously running loop. 

 

2. Filtering out the over-priced items- 

We have defined a list of upper limit cost 

for each accessory in the game and if, the price of 

the accessory exceeds a certain limit, it gets 

blacklisted from buying.  

 

3. Optimum Accessory Selection- 

After the filtration process, the list of 

accessories that pass the filtration process are then 

sent to the accessory selection process, where we 

aim to but the most expensive accessory in the list 

which we can afford to buy according to current 

cookie count. 

 

Thus, this process happens in two stages- 

a. Getting the list optimum items. 

This is simply the list of items we get after the 

filtration process. 
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b. Selecting the affordable item from the list 

of optimum items. 

We use the list of items we got from the 

filtration process and the selenium in-built function 

to derive the current cookie count to create a new 

list of items which are currently affordable.Then, 

we select the most expensive element from that 

newly created affordable items list to get the 

highest cookie yield possible. 

The processes 1 and 2 are repeated with a 

5-second window gap to deal with bottleneck of the 

website server as well as giving the bot time to 

collect adequate number of cookies. If there aren‟t 

any accessories currently affordable then, the 

affordable accessories list remains empty and no 

item is purchased. 

This whole above 1, 2 and 3 processes 

happen within the user given time_constraint input 

and the efficiency of the bot or that session is 

determined by the rate of cookie generation 

achieved at the end of the session. 

The session ends when the time limit 

given by the user is over and time module has been 

used to keep track of the time by our bot. 

Thus, our bot aims to maximise the CPS 

or Cookie generated per second to deal with our 

three problem statements. 

 
Figure 1: Flow chart of algorithm CPS_Max 

 

Suppose1, 2 and 3as algorithm1, algorithm2 and 

algorithm3. Returnvalue1 is used in the algorithm2 

and algorithm3. Returnvalue2 is used in 

algorithm3. Returnvalue3 is used in our CPSmax 

algorithm thus, there are three major functions and 

one driver function that drives all three functions. 

 
 

At the end of the process, the effectiveness 

of the bot or the session can be evaluated by 

comparing the number of cookies generated within 

the given time constraint with the rate at which 

similar tasks can be completed manually. 

 

1.1 Algorithm Approach 

The algorithm is divided into four major 

components to achieve the three primary tasks for 

cps maximization. Web scrapping algorithm, Over 

price filter algorithm, Optimum accessory selection 

algorithm and CPS maximization algorithm. 

 
 

Input-[String Element_Path]is the system path to 

the selenium tool installed in the computer to 

activate and link the website to the driver. 

Accessories []- We extract the list of purchasable 

accessories in the form of selenium object using the 

CSS_SELECTOR methodology and selenium 

inbuilt function and store them in the accessories[] 

list. 

CookieId-We extract the access id of cookie icon 

in the game using the selenium tool and store it in 

the CookieId variable to be used in the CPSmax 

algorithm. 

cps-We store the extracted cookie rate from the 

website in the cps variable. 
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GetCookieCount(CookieId)-This function returns 

the current cookie count or cookie earned in the 

game, that is later used to filter out affordable 

accessories to buy. It uses the extracted CookieId to 

access the website elements. 

 
 

Input-We use the selenium object list accessories[] 

derived by WebScraper algorithm for filtration 

process. 

acc[]-Used to store the accessories[] list extracted 

from the WebScraper function which is called as 

pre-defined function parameter in the 

OverPriceFilter function. 

 

Accessories_Price[]-List that simply stores the 

current extracted prices of the accessories by 

extracting the prices of the accessories from the list 

of selenium object- accessories[]. 

 

oLimit[]- We have calculated the upper limit for 

the prices of each of the accessories exceeding 

which the element would be blacklisted and won‟t 

be counted in the above accessory selection.The 

limit has been set in a manner that if, the price of 

an accessory exceeds the price of the next-higher-

expensive accessory keeping their base price as 

reference point, then, the lower accessory would be 

blacklisted and the next higher accessory would be 

selected. 

In case of the last accessory the “time machine” we 

have set no-limit and have simply assigned „1‟ as 

it‟s the most valuable accessory and there‟s no 

other higher accessory present. 

 

Accessories Upper 

Price 

Limit 

Cursor 5*10^2 

Grandma 2*10^3 

Factory 7*10^3 

Mine 5*10^4 

Shipment 10^6 

Alchemy Lab 10^8 

Portal 248*10^6 

Time Machine 1 

 

O_Accessories[]- Simply stores the list of 

accessories that pass the over-price filtration 

process. 

 
 

Input- O_Accessories[] returned by 

OverPriceFilter function called as a pre-defined 

function parameter and is stored in temp[] list. 

List affordable_acc[]-List that stores the prices of 

the items that are currently affordable according to 

the current cookie count, this list remains empty if, 

no items are purchasable.  

Integer x-Stores the current cookie count returned 

by WebScraper.GetCookieCount function. If, the 

current cookie count is less than the price of a 

accessory then the accessory won‟t be added in the 

affordable_acc[]. 

 

 
 

Input-String Path is the selenium driver path 

passed to the algorithm to connect with website and 

Integer time_constraint is the user allotted runtime 

to get the highest CPS possible in that runtime. 
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List cps-List that stores the cps returned from the 

website at the end of the algorithm, that determines 

the efficiency of the algorithm. 

String ToBuy-Stores the id of the accessory that is 

selectedin the GetMaxPriceItem(affordable_acc[]) 

function call. 

time_out-The time_constraint input is converted 

into minutes to determine the time limit of the 

program run. The program is terminated returning 

the currently achieved cps when the time is up. 

time_check-time_check ->time.time(), means it‟s 

assigned to the time module that represents the 

current time of the system to keep track of the flow 

of time in the program. 

CookieClick(WebScraper.CookieId)- Simply 

performs the cookie clicks. 

affordable_acc[]-Stores the list of affordable 

accessories returned by the 

OptimumAccessorySelectionfunction. 

GetMaxPriceItem()-Takes the affordable_acc[] 

list as input and simply returns the most expensive 

item in the list which is stored in string variable 

ToBuy. 

[time_check = time.time() + 5]-Increments 

time_check  by 5 more seconds making it run faster 

than the currrent time, thus, [time.time() 

>time_check] condition becomes true only after 5-

second intervals making the accessory purchase 

process occur at 5-second intervals. Giving the bot 

cookie generation time and reduces bottleneck. 

 

IV. EXPERIMENTAL ANALYSIS 
The program has been tested for 23 instances with 

varying input of time constraints. The output given 

by the program for varying input constraints are as 

follows: 

 
Figure 2: Testing results obtained by various input 

constraints for 20 mins 

 

The cps achieved in the above time 

constraints aren‟t fixed but have a variation of (-5 

to +5) seconds depending on the responsiveness of 

the website as well as the path our bot takes in each 

run.When the time_constraint‟s range is increased 

to 40mins, it gives a CPS with variation from (-10 

to +10) and the variation increases with the 

increase in time_constraint. 

 

 
Figure 3: Testing results when time constraint 

increased till 40 mins 

 

Factors affecting the CPS per iteration for a given 

time constraint- 

 Variation in responsiveness of the website per 

extraction or action command. 

 The filtered-out item  

 cookie_count variation with 

max(affordable_items) per iteration. 

 The compounding effect of all the above 

factors.  

 

V. GRAPHICAL & MATHEMATICAL 

ANALYSIS 
1.2 Graphical Analysis  

Our algorithm with the input(time_constraint) gives 

a CPS in the pattern of n2 where n is the 

time_constraint in minutes. For (1<n<20) the 

observed pattern is n2. For the time constraint of 

(20<n<40), where n=minutes, the observed pattern 

is n3. 

 
Figure 4: CPS vs Time(in mins)-20 mins graph 
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Figure 5: CPS vs Time(in mins) - 40 min graph 

 

Getting the graphical pattern of item prices and the       

increase in the pricing of the items.  

 
Figure 6: Exponential increase in the pricing of 

items 

 

As for the increasing deviation with 

increasing time constraints, this may be due to a 

range of factors, including resource exhaustion, 

server overload, or other external factors beyond 

your bot's control. To mitigate this issue, you may 

need to implement a more sophisticated 

performance monitoring system to identify and 

troubleshoot bottlenecks or other issues that may 

arise during longer runs. 

 
Figure 7: Pricing vs Items graph exponentially 

increasing 

 

The items vs prices graph‟s pricing 

increases exponentially after reaching the portal 

prices and the CPS vs time graph should always be 

behind the price graph to be able to purchase the 

items after filtration. Meaning the (CPS vs time) 

graph for time n would always follow behind (Price 

vs Items) graph.Assuming you took an action to 

filter certain items according to the price, then the 

time taken to purchase the items would be shorter 

in comparison to purchase the same items without 

any filtration. The CPS vs time graph should also 

have an upward slope that increases with time; 

however, it should always be lower than the Price 

vs Items graph. The end result should look 

something like this: Price Vs Items \/ CPS Vs Time 

 

1.3 Mathematical Analysis 

Means the equation of (CPS vs time) 

increases for time duration (0,20,40,60…. n-20, n) 

creating an arithmetic series of a=0, d=20, an=n. 

The respective equations of (items vs price)graph 

for n time interval of 20 minutes increment gives a 

geometric series for price increase of items bough 

in time n is n1 , n2, n3 , n4 , … , nn .        

 
Thus, the equation of total price for 

time_duration   “n” is  and the 

equation for instance n is . Thus, as the function 

of (CPS vs time) is slower than the increase price 

rate by game rules [8] the geometric series for time 

n(mins) is 23 , 26, 29, … , 23n . In case of CPS the 

function remains on average constant throughout 

the period of time(n-minutes).Hence, for time(n 

minutes) cps attained by the algorithm at instance n 

is 23n . 

CPS= 𝟐𝟑𝐧 for n>=1& (n=time constraint)  

 

VI. CONCLUSION 
Greedy approach of per iteration 

comparison is the most suitable approach for the 

algorithm of our cookie clicker bot because we 

don‟t have the foresight to account for the website 

responsiveness& variation of filtered itemsas well 

as the max(affordable_upgrades) per iteration put 

together, due to lack of this foresight we can‟t use 

dynamic approach for this problem. The greedy 

approach used deals with the immediate problem of 

over pricing as well as selection of maximum price 

to attain the maximum cps. The game follows the 

increment of 𝐧𝐧 𝐟𝐨𝐫 𝐭𝐢𝐦𝐞 𝐧 𝐦𝐢𝐧𝐮𝐭𝐞𝐬 andthe bot 



 

        

International Journal of Advances in Engineering and Management (IJAEM) 

Volume 5, Issue 6 June 2023,   pp: 62-69 www.ijaem.net    ISSN: 2395-5252 

 

 

 

 

DOI: 10.35629/5252-05066269                |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal     Page 69 

algorithm for CPS follows an instance increment of 

𝟐𝟑𝐧  𝐟𝐨𝐫 𝐭𝐢𝐦𝐞 𝐧 𝐦𝐢𝐧𝐮𝐭𝐞𝐬. Thus, we have 

automated the hectic process of coin collection as 

well as addressing the problem of overpricing of 

the items faced in cookie clicker game. Automated 

gameplay recently has become a big part of climber 

as well as role playing games and our bot works on 

a similar methodology of increasing the player 

retention rate by giving them the satisfaction of 

having their empire increase. The algorithm also 

frees the user from the burden of time required to 

purchase certain accessories as program run on user 

defined time_constrints making it easier for the 

user to have a prediction of wait time required for 

all the accessories. 

 

REFERENCES 
[1]. S. Fizek, "Automated State of Play-

Rethinking Anthropocentric Rules of the 

Game," Digital Culture & Society, 2018.  

[2]. M. K. R. G. K. F. S. Chia-Hui Chang, 

"Web Information Extraction System," in 

IEEE Computer Society, 2006.  

[3]. Chang, C. H., Kayed, M., Girgis, M. R., 

&Shaalan, K. F. (2006). A survey of web 

information extraction systems. IEEE 

transactions on knowledge and data 

engineering, 18(10), 1411-1428. 

[4].  Bellemare, M.G., Naddaf, Y., Veness, J. 

and Bowling, M., 2013. The arcade 

learning environment: An evaluation 

platform for general agents. Journal of 

Artificial Intelligence Research, 47, 

pp.253-279 

[5]. Hingston, P., & Zhang, M. (2007). 

Evolving agents for computer games. 

IEEE Transactions on Evolutionary 

Computation, 11(5), 556-566. 

[6]. Wallace, J.R., Pape, J., Chang, Y.L.B., 

McClelland, P.J., Graham, T.N., Scott, 

S.D. and Hancock, M., 2012, February. 

Exploring automation in digital tabletop 

board game. In Proceedings of the ACM 

2012 conference on computer supported 

cooperative work companion (pp. 231-

234). 

[7]. Albaghajati, A.M. and Ahmed, M.A.K., 

2020. Video game automated testing 

approaches: An assessment 

framework. IEEE transactions on games. 

[8].  Woof, W. and Chen, K., 2018, August. 

Learning to play general video-games via 

an object embedding network. In 2018 

IEEE Conference on Computational 

Intelligence and Games (CIG) (pp. 1-8). 

IEEE. 

[9]. Fernández-Ares, A., García-Sánchez, P., 

Mora, A.M., Castillo, P.A., Guervós, 

J.J.M., Camacho, D., Gómez-Martín, 

M.A. and González-Calero, P.A., 2014, 

June. Designing competitive bots for a real 

time strategy game using genetic 

programming. In CoSECivi (pp. 159-172). 

[10]. Vancouver  

 

 

 

 

 

 


