

International Journal of Advances in Engineering and Management (IJAEM)

Volume 5, Issue 6 June 2023, pp: 62-69 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-05066269 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 62

Greedy Based Improvised Cookie Clicker

Bot

Team Lead- Pratyush Arvind, Team- Shlok Verma, Mayank

Guide- Runumi Devi

--- ---------

Date of Submission: 01-06-2023 Date of Acceptance: 10-06-2023

--- ----------

ABSTRACT-Cookie Clicker is a popular online

game focused on students. This game requires users

to perform repetitive clicks on the cookie which is

an icon in the game that collects points from those

clicks. Subsequently, those points are used for

buying various available accessories and thus

improving your progress in the game. However,

these repetitive clicks create inconvenience due to

the repetition cumbersome process of performing

repetitive task of clicking for collecting points. This

in turn affects the popularity of the game as the

whole point of the game is to provide is to have

points to buy accessories. Our work has

implemented an AI based bot towards not only

replacing the repetitive clicks but also collecting

optimum relevant accessories based on the acquired

points. A greedy-based approach is used for

choosing optimum accessories as well as filtering

out the overpriced accessories by the bot. The bot

has been tested for 20 instances of game playing

and is found to have achieved optimum accessories

and repetition reduced by 95%.

Keywords- cookie-per second (cps), web

scrapping, time-module, Web-driver, Selenium.

I. INTRODUCTION
Cookie Clicker is an incremental game

created by French programmerJulien "Orteil"

Thiennot in 2013. The game require user to initially

clicks on a big cookie icon on the screen, earning a

single cookie per click. Once earned, cookies are

spent on purchasing accessories such as cursor,

grandma, factory, mine, shipment, Alchemy lab,

Portal, Time Machine. Each purchase further

allows user to earn more cookies.Although this

game allows user to earn infinite number cookies

and subsequent accessories, users may aim to reach

milestone numbers of cookies within a specified

time.The game is played for collecting cookie by

the clicking on the cookie icon. The number of

cookies collected is utilized as a currency for

buying the accessories like cursor, grandma,

factory, mine, shipment, alchemy lab, portal, time

machine.

Each accessorieshave two properties such

as price and cookie generation. While buying

accessories, through earned cookies the property

“price” gets increased. The asse bought through the

earned cookies. Each generation increases cookie-

per second (CPS). However, it doesn‟t change the

accessories cookie generation rate but the price for

each accessory increases the more it‟s bought.

Thus, after a period of time making that accessory

over-priced for value provided. Thus, the goal of

the game is to get the highest cps possible in for a

given time.

A big number of modern RPG (role

playing games) is based on the principle of autopay

which allows the user to only focus on acquiring

accessories of the game. This kind of game follows

the revenue model that is based on player-retention

with the dopamine psychology of constant reward

system. Our works focuses on increasing the player

retention by removing the process of manually

collecting the cookies and reducing the long-

playing hours. The bot simply provides user the

benefit of purchasing accessories for progressing

further in the game.

Our research addresses three major

problems of the game such as i) the significant

amount of clicking hours in the game, ii) over-

pricing of the items and iii) choosing the right

accessories for the current cooking credit.

The aforementioned issued are handled by

achieving maximum cps. To achieve this, our

research accomplishes the following task

 Automating cookie clicks.

 Filtering out the over-priced items.

 Optimum accessory selection

NOTE- The term items and accessories used in the

paper refer to the same list of purchasable

accessories present in the game.

https://en.wikipedia.org/wiki/Incremental_game
https://en.wikipedia.org/wiki/Programmer

International Journal of Advances in Engineering and Management (IJAEM)

Volume 5, Issue 6 June 2023, pp: 62-69 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-05066269 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 63

II. RELATED WORK
Game automation, Bot design, and Game testing

are the three domain that this research paper

expands upon.

A. Game Automation[3][4][5]

Gaming automation refers to the use of

software or hardware tools to automate certain

tasks or actions in video games. This can include

anything from automatically farming resources or

leveling up characters, to performing complex

actions or movements with precision and speed.

Players who want to save time and effort, or who

want to achieve certain goals more quickly than

they would be able to through manual play often

use gaming automation. The essential ideas from

the associated works are as follows:

As described by Bellemare, M. G., et al

the Developing AI agents with general competency

across a variety of Atari 2600 games is a task that

the Arcade Learning Environment (ALE)

evaluation platform puts forward. It allows a range

of diverse problem contexts, and the scientific

community has been focusing on growing attention

to it. That has led to several high-profile success

stories including the highly publicized Deep Q-

Networks (DQN).

The overall utilization of the ALE by the

research community is looked by Bellemare, M.G,

et al. They illustrate the evolution of the ALE's

evaluation procedures and identify several major

issues that have been addressed. Through the help

of this discussions, that we can offer some

methodological best practices and in their natural

state benchmark outcomes. In order to continue

the field's advancement, which provide an updated

version of the ALE that supports numerous modes

of play and provides a type of stochasticity that we

refer to as sticky actions. This broad analysis

brings to a conclusion by an overview of the

challenges observed when the ALE initially was

suggested, an overview of the state of the art in a

number of fields, and an overview of unresolved

problems.

Evolutionary Computation: Hingston et al.

talk about the basis for developing agents being

evolutionary algorithms, such as genetic algorithms

or genetic programming. In order to find the best

agent behaviors, these algorithms use Darwinian

evolution-inspired concepts including selection,

crossover, and mutation.

The features of game automation help to

solve the adversities as in form of gaming while

helping in the continuous trigger‟s that is same

through the gaming process. That is Auto-aim: This

feature supports a player in automatically targeting

at targets, making it easier to shoot and remove

competitors.Auto-fire: With this feature, a player

can engage in combat frequently without having

continually tapping the fire button. Auto-loot: This

option helps the player save time and effort by

grabbing loot from containers and enemies

automatically.Auto-run: With this function, a

player can run without needing to keep the run

button depressed.Auto-save: This function prevents

the player from having to worry about manually

saving the game by automatically saving the game

progress at specific checkpoints.Auto-quest: This

function helps the user achieve quests and

objectives by guiding them.

B. Bot Designing [6]

Bot designing is the process of creating

software programs that can perform automated

tasks or actions without human intervention. Bots

can be designed for various purposes, such as

automating customer service, data collection, social

media management, and gaming automation.

The process of designing a bot involves

several steps, including:Identifying the task or

action to be automated, Determining the platform

or environment in which the bot will operate,

Selecting a programming language and

development framework, Designing the bot's user

interface and interaction flow, Implementing the

bot's functionality and logic, Testing and

debugging the bot, Deploying the bot to its

intended environment, Bot designing requires skills

in programming, software development, and user

experience design. It is important to consider

ethical and legal implications when designing bots,

as some automated actions may be considered

unethical or illegal.

The main key components of a test like

this are divided into the following categories:

Bot Architecture: Describe the bot's

architectural layout, including the main framework,

individual modules, and interactions between the

various parts. Talk about the architectural

frameworks or patterns that were selected for the

bot's development.

Sensing and Perception: Investigate the

techniques and tools used in sensing and

perception, such as sensor integration, natural

language processing, and computer vision. Talk

about the methods utilized to get pertinent data

from the environment or user inputs.

Decision-Making and Control: Talk about

the methods and algorithms the bot uses to make

decisions and control itself. Rule-based systems,

machine learning techniques, or hybrid strategies

could be used in this. Describe how the bot weighs

International Journal of Advances in Engineering and Management (IJAEM)

Volume 5, Issue 6 June 2023, pp: 62-69 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-05066269 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 64

alternatives, chooses actions, and modifies its

behavior in response to input or shifting

circumstances.

Learning and Adaptation: Analyze the

bot's capacity for learning and adapting. Talk about

using machine learning, reinforcement learning, or

other methods to help the bot get better with

experience and feedback over time.

Integration and Deployment: Discuss how

the bot will be integrated into the target system or

environment. Deal with any technical issues or

difficulties relating to infrastructure for

deployment, scalability, security, or compatibility.

Performance and Evaluation: Analyze the

bot's performance in terms of usability,

effectiveness, dependability, and user happiness.

Talk about the measures used to evaluate the bot's

performance and any tests or empirical findings

that support it.

An in-depth review of the technological

factors involved in creating intelligent bots is

provided by a technical analysis of bot designing. It

takes into account a number of things, including

architecture, sensing, decision-making, learning,

communication, integration, performance, and

ethical concerns. Depending on the particular

environment and goals of the bot design, the

precise material and level of analysis may change.

C. Game Testing[7][8]

Game testing is a process of evaluating the

quality and functionality of a video game before its

release to the public. The goal of game testing is to

identify and report any bugs, glitches, or other

issues that could negatively affect the player's

experience. A team of testers who play the game in

various ways and scenarios to uncover any

potential issues typically conducts game testing.

Game testing typically involves several

phases, including:Alpha testing: This is the initial

phase of testing where the game is tested by a small

group of testers to identify major issues and

bugs.Beta testing: This is a more extensive phase of

testing where the game is tested by a larger group

of testers to identify any remaining issues and

gather feedback on gameplay and user

experience.Release candidate testing: This is the

final phase of testing where the game is tested to

ensure that it is ready for release to the public.

Test automation tools, manual testing, and

exploratory testing are just a few of the methods

and tools that game testers employ to find

problems. Additionally, they create bug reports to

record their discoveries, and they collaborate with

the game's production team to fix any problems

before the game is launched.

By Woof, W. and Chen, K. finding that

the establishment of general video-game AI has

proven to be an effective utilisation of deep

reinforcement learning (DRL). Nevertheless,

almost all of existing DRL audio-visual-game

agents learn from the start to the end from the

game's video output, which is redundant for many

applications and introduces a number of additional

problems. Furthermore, working directly with

pixel-based basic video data is significantly

different from what a real player would do. In this

study, we provide an original approach that allows

DRL agents to directly learn from object data.

This is achieved by using an object

embedding network (OEN), that simultaneously

meets the DRL and compresses an array of object

feature vectors of different lengths into a single

fixed-length unified feature vector representing the

current game state. By evaluating the OEN-based

DRL agent against a number of innovative

techniques on a game selected in the GVG-AI

Competition. Based on our experimental findings,

the performance of our object-based DRL agent is

on par with the methodologies we utilized in our

comparing research.

III. PROPOSED MODEL
We have dealt with the above problem with a three-

phase model, which divides and solves the problem

in three phases.

1. Automating the Cookie Clicks-

Cookie clicks are automated by simply

using selenium in-built functions to simply click

the cookie continuously by putting it in a while

loop which runs continuously, then, we use the

time_constraint input taken in by the user to use as

a time limit to end the continuously running loop.

2. Filtering out the over-priced items-

We have defined a list of upper limit cost

for each accessory in the game and if, the price of

the accessory exceeds a certain limit, it gets

blacklisted from buying.

3. Optimum Accessory Selection-

After the filtration process, the list of

accessories that pass the filtration process are then

sent to the accessory selection process, where we

aim to but the most expensive accessory in the list

which we can afford to buy according to current

cookie count.

Thus, this process happens in two stages-

a. Getting the list optimum items.

This is simply the list of items we get after the

filtration process.

International Journal of Advances in Engineering and Management (IJAEM)

Volume 5, Issue 6 June 2023, pp: 62-69 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-05066269 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 65

b. Selecting the affordable item from the list

of optimum items.

We use the list of items we got from the

filtration process and the selenium in-built function

to derive the current cookie count to create a new

list of items which are currently affordable.Then,

we select the most expensive element from that

newly created affordable items list to get the

highest cookie yield possible.

The processes 1 and 2 are repeated with a

5-second window gap to deal with bottleneck of the

website server as well as giving the bot time to

collect adequate number of cookies. If there aren‟t

any accessories currently affordable then, the

affordable accessories list remains empty and no

item is purchased.

This whole above 1, 2 and 3 processes

happen within the user given time_constraint input

and the efficiency of the bot or that session is

determined by the rate of cookie generation

achieved at the end of the session.

The session ends when the time limit

given by the user is over and time module has been

used to keep track of the time by our bot.

Thus, our bot aims to maximise the CPS

or Cookie generated per second to deal with our

three problem statements.

Figure 1: Flow chart of algorithm CPS_Max

Suppose1, 2 and 3as algorithm1, algorithm2 and

algorithm3. Returnvalue1 is used in the algorithm2

and algorithm3. Returnvalue2 is used in

algorithm3. Returnvalue3 is used in our CPSmax

algorithm thus, there are three major functions and

one driver function that drives all three functions.

At the end of the process, the effectiveness

of the bot or the session can be evaluated by

comparing the number of cookies generated within

the given time constraint with the rate at which

similar tasks can be completed manually.

1.1 Algorithm Approach

The algorithm is divided into four major

components to achieve the three primary tasks for

cps maximization. Web scrapping algorithm, Over

price filter algorithm, Optimum accessory selection

algorithm and CPS maximization algorithm.

Input-[String Element_Path]is the system path to

the selenium tool installed in the computer to

activate and link the website to the driver.

Accessories []- We extract the list of purchasable

accessories in the form of selenium object using the

CSS_SELECTOR methodology and selenium

inbuilt function and store them in the accessories[]

list.

CookieId-We extract the access id of cookie icon

in the game using the selenium tool and store it in

the CookieId variable to be used in the CPSmax

algorithm.

cps-We store the extracted cookie rate from the

website in the cps variable.

International Journal of Advances in Engineering and Management (IJAEM)

Volume 5, Issue 6 June 2023, pp: 62-69 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-05066269 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 66

GetCookieCount(CookieId)-This function returns

the current cookie count or cookie earned in the

game, that is later used to filter out affordable

accessories to buy. It uses the extracted CookieId to

access the website elements.

Input-We use the selenium object list accessories[]

derived by WebScraper algorithm for filtration

process.

acc[]-Used to store the accessories[] list extracted

from the WebScraper function which is called as

pre-defined function parameter in the

OverPriceFilter function.

Accessories_Price[]-List that simply stores the

current extracted prices of the accessories by

extracting the prices of the accessories from the list

of selenium object- accessories[].

oLimit[]- We have calculated the upper limit for

the prices of each of the accessories exceeding

which the element would be blacklisted and won‟t

be counted in the above accessory selection.The

limit has been set in a manner that if, the price of

an accessory exceeds the price of the next-higher-

expensive accessory keeping their base price as

reference point, then, the lower accessory would be

blacklisted and the next higher accessory would be

selected.

In case of the last accessory the “time machine” we

have set no-limit and have simply assigned „1‟ as

it‟s the most valuable accessory and there‟s no

other higher accessory present.

Accessories Upper

Price

Limit

Cursor 5*10^2

Grandma 2*10^3

Factory 7*10^3

Mine 5*10^4

Shipment 10^6

Alchemy Lab 10^8

Portal 248*10^6

Time Machine 1

O_Accessories[]- Simply stores the list of

accessories that pass the over-price filtration

process.

Input- O_Accessories[] returned by

OverPriceFilter function called as a pre-defined

function parameter and is stored in temp[] list.

List affordable_acc[]-List that stores the prices of

the items that are currently affordable according to

the current cookie count, this list remains empty if,

no items are purchasable.

Integer x-Stores the current cookie count returned

by WebScraper.GetCookieCount function. If, the

current cookie count is less than the price of a

accessory then the accessory won‟t be added in the

affordable_acc[].

Input-String Path is the selenium driver path

passed to the algorithm to connect with website and

Integer time_constraint is the user allotted runtime

to get the highest CPS possible in that runtime.

International Journal of Advances in Engineering and Management (IJAEM)

Volume 5, Issue 6 June 2023, pp: 62-69 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-05066269 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 67

List cps-List that stores the cps returned from the

website at the end of the algorithm, that determines

the efficiency of the algorithm.

String ToBuy-Stores the id of the accessory that is

selectedin the GetMaxPriceItem(affordable_acc[])

function call.

time_out-The time_constraint input is converted

into minutes to determine the time limit of the

program run. The program is terminated returning

the currently achieved cps when the time is up.

time_check-time_check ->time.time(), means it‟s

assigned to the time module that represents the

current time of the system to keep track of the flow

of time in the program.

CookieClick(WebScraper.CookieId)- Simply

performs the cookie clicks.

affordable_acc[]-Stores the list of affordable

accessories returned by the

OptimumAccessorySelectionfunction.

GetMaxPriceItem()-Takes the affordable_acc[]

list as input and simply returns the most expensive

item in the list which is stored in string variable

ToBuy.

[time_check = time.time() + 5]-Increments

time_check by 5 more seconds making it run faster

than the currrent time, thus, [time.time()

>time_check] condition becomes true only after 5-

second intervals making the accessory purchase

process occur at 5-second intervals. Giving the bot

cookie generation time and reduces bottleneck.

IV. EXPERIMENTAL ANALYSIS
The program has been tested for 23 instances with

varying input of time constraints. The output given

by the program for varying input constraints are as

follows:

Figure 2: Testing results obtained by various input

constraints for 20 mins

The cps achieved in the above time

constraints aren‟t fixed but have a variation of (-5

to +5) seconds depending on the responsiveness of

the website as well as the path our bot takes in each

run.When the time_constraint‟s range is increased

to 40mins, it gives a CPS with variation from (-10

to +10) and the variation increases with the

increase in time_constraint.

Figure 3: Testing results when time constraint

increased till 40 mins

Factors affecting the CPS per iteration for a given

time constraint-

 Variation in responsiveness of the website per

extraction or action command.

 The filtered-out item

 cookie_count variation with

max(affordable_items) per iteration.

 The compounding effect of all the above

factors.

V. GRAPHICAL & MATHEMATICAL

ANALYSIS
1.2 Graphical Analysis

Our algorithm with the input(time_constraint) gives

a CPS in the pattern of n2 where n is the

time_constraint in minutes. For (1<n<20) the

observed pattern is n2. For the time constraint of

(20<n<40), where n=minutes, the observed pattern

is n3.

Figure 4: CPS vs Time(in mins)-20 mins graph

International Journal of Advances in Engineering and Management (IJAEM)

Volume 5, Issue 6 June 2023, pp: 62-69 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-05066269 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 68

Figure 5: CPS vs Time(in mins) - 40 min graph

Getting the graphical pattern of item prices and the

increase in the pricing of the items.

Figure 6: Exponential increase in the pricing of

items

As for the increasing deviation with

increasing time constraints, this may be due to a

range of factors, including resource exhaustion,

server overload, or other external factors beyond

your bot's control. To mitigate this issue, you may

need to implement a more sophisticated

performance monitoring system to identify and

troubleshoot bottlenecks or other issues that may

arise during longer runs.

Figure 7: Pricing vs Items graph exponentially

increasing

The items vs prices graph‟s pricing

increases exponentially after reaching the portal

prices and the CPS vs time graph should always be

behind the price graph to be able to purchase the

items after filtration. Meaning the (CPS vs time)

graph for time n would always follow behind (Price

vs Items) graph.Assuming you took an action to

filter certain items according to the price, then the

time taken to purchase the items would be shorter

in comparison to purchase the same items without

any filtration. The CPS vs time graph should also

have an upward slope that increases with time;

however, it should always be lower than the Price

vs Items graph. The end result should look

something like this: Price Vs Items \/ CPS Vs Time

1.3 Mathematical Analysis

Means the equation of (CPS vs time)

increases for time duration (0,20,40,60…. n-20, n)

creating an arithmetic series of a=0, d=20, an=n.

The respective equations of (items vs price)graph

for n time interval of 20 minutes increment gives a

geometric series for price increase of items bough

in time n is n1 , n2, n3 , n4 , … , nn .

Thus, the equation of total price for

time_duration “n” is and the

equation for instance n is . Thus, as the function

of (CPS vs time) is slower than the increase price

rate by game rules [8] the geometric series for time

n(mins) is 23 , 26, 29, … , 23n . In case of CPS the

function remains on average constant throughout

the period of time(n-minutes).Hence, for time(n

minutes) cps attained by the algorithm at instance n

is 23n .

CPS= 𝟐𝟑𝐧 for n>=1& (n=time constraint)

VI. CONCLUSION
Greedy approach of per iteration

comparison is the most suitable approach for the

algorithm of our cookie clicker bot because we

don‟t have the foresight to account for the website

responsiveness& variation of filtered itemsas well

as the max(affordable_upgrades) per iteration put

together, due to lack of this foresight we can‟t use

dynamic approach for this problem. The greedy

approach used deals with the immediate problem of

over pricing as well as selection of maximum price

to attain the maximum cps. The game follows the

increment of 𝐧𝐧 𝐟𝐨𝐫 𝐭𝐢𝐦𝐞 𝐧 𝐦𝐢𝐧𝐮𝐭𝐞𝐬 andthe bot

International Journal of Advances in Engineering and Management (IJAEM)

Volume 5, Issue 6 June 2023, pp: 62-69 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-05066269 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 69

algorithm for CPS follows an instance increment of

𝟐𝟑𝐧 𝐟𝐨𝐫 𝐭𝐢𝐦𝐞 𝐧 𝐦𝐢𝐧𝐮𝐭𝐞𝐬. Thus, we have

automated the hectic process of coin collection as

well as addressing the problem of overpricing of

the items faced in cookie clicker game. Automated

gameplay recently has become a big part of climber

as well as role playing games and our bot works on

a similar methodology of increasing the player

retention rate by giving them the satisfaction of

having their empire increase. The algorithm also

frees the user from the burden of time required to

purchase certain accessories as program run on user

defined time_constrints making it easier for the

user to have a prediction of wait time required for

all the accessories.

REFERENCES
[1]. S. Fizek, "Automated State of Play-

Rethinking Anthropocentric Rules of the

Game," Digital Culture & Society, 2018.

[2]. M. K. R. G. K. F. S. Chia-Hui Chang,

"Web Information Extraction System," in

IEEE Computer Society, 2006.

[3]. Chang, C. H., Kayed, M., Girgis, M. R.,

&Shaalan, K. F. (2006). A survey of web

information extraction systems. IEEE

transactions on knowledge and data

engineering, 18(10), 1411-1428.

[4]. Bellemare, M.G., Naddaf, Y., Veness, J.

and Bowling, M., 2013. The arcade

learning environment: An evaluation

platform for general agents. Journal of

Artificial Intelligence Research, 47,

pp.253-279

[5]. Hingston, P., & Zhang, M. (2007).

Evolving agents for computer games.

IEEE Transactions on Evolutionary

Computation, 11(5), 556-566.

[6]. Wallace, J.R., Pape, J., Chang, Y.L.B.,

McClelland, P.J., Graham, T.N., Scott,

S.D. and Hancock, M., 2012, February.

Exploring automation in digital tabletop

board game. In Proceedings of the ACM

2012 conference on computer supported

cooperative work companion (pp. 231-

234).

[7]. Albaghajati, A.M. and Ahmed, M.A.K.,

2020. Video game automated testing

approaches: An assessment

framework. IEEE transactions on games.

[8]. Woof, W. and Chen, K., 2018, August.

Learning to play general video-games via

an object embedding network. In 2018

IEEE Conference on Computational

Intelligence and Games (CIG) (pp. 1-8).

IEEE.

[9]. Fernández-Ares, A., García-Sánchez, P.,

Mora, A.M., Castillo, P.A., Guervós,

J.J.M., Camacho, D., Gómez-Martín,

M.A. and González-Calero, P.A., 2014,

June. Designing competitive bots for a real

time strategy game using genetic

programming. In CoSECivi (pp. 159-172).

[10]. Vancouver

